Effect of Thermal-Electric Cross Coupling on Heat Transport in Nanofluids

نویسندگان

  • Zhanxiao Kang
  • Liqiu Wang
  • Mehrdad Massoudi
چکیده

Nanofluids have an enhanced thermal conductivity compared with their base fluid. Although many mechanisms have been proposed, few of them could give a satisfactory explanation of experimental data. In this study, a mechanism of heat transport enhancement is proposed based on the cross coupling of thermal and electric transports in nanofluids. Nanoparticles are viewed as large molecules which have thermal motion together with the molecules of the base fluid. As the nanoparticles have surface charges, the motion of nanoparticles in the high-temperature region will generate a relatively strong varying electric field through which the motion will be transported to other nanoparticles, leading to a simultaneous temperature rise of low-temperature nanoparticles. The local base fluid will thus be heated up by these nanoparticles through molecular collision. Every nanoparticle could, therefore, be considered as an internal heat source, thereby enhancing the equivalent thermal conductivity significantly. This mechanism qualitatively agrees with many experimental data and is thus of significance in designing and applying nanofluids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

متن کامل

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

متن کامل

A modified variable physical properties model, for analyzing nanofluids flow and heat transfer over nonlinearly stretching sheet

In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are common...

متن کامل

Investigation of the Effect of Geometry and Type of Nanofluids on the Heat Transfer Inside the Microchannel using Computational Fluid Dynamics (CFD)

The purpose of this article is the numerical study of flow and heat transfer characteristics of Nanofluids inside a cylindrical microchannel with rectangular, triangular, and circular cross-sections. The size and shape of these sections have a significant impact on the thermal and hydraulic performance of the microchannel heat exchanger. The Nanofluids used in this work include water and De-Eth...

متن کامل

MHD Jeffrey NanoFluids Flow Over a Stretching Sheet Through a Porous Medium in Presence of Nonlinear Thermal Radiation and Heat Generation/Absorption

In this article, a numerical investigation of magnetohydrodynamic non-Newtonian nanofluid flow on a stretching sheet through an isotropic porous medium. The effects of both non-linear thermal radiation and heat generation/absorption were studied on distributions of velocity, temperature and concentration. On the other side, the governing partial differential equations have been transformed by u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017